HOW AR+AI COULD TRANSFORM THE FUTURE OF PERSONAL COMPUTING

Doug A. Bowman Center for Human-Computer Interaction Virginia Tech ChC Center for Human-Computer Interaction

EVOLUTION OF GENERAL-PURPOSE COMPUTING

Time

WHY WILL AR GLASSES BE THE NEXT STEP?

Extremely personal (worn on your face, no one else can see display)

Fully portable (can be used anywhere eyeglasses can be worn)

Highly convenient (always available and in view)

Unconstrained interface (display(s) can be any size/shape/location)

 Note: Google Glass and other "smart glasses" can't do this – need "real AR"

CURRENT AR TECHNOLOGY

Microsoft HoloLens2

Varjo XR-3

Apple Vision Pro

EVERYDAY AR

Everyday AR envisions a world in which:

- Virtual displays are available all the time, anywhere
- Virtual displays contain information and applications that users may need anytime
- Users interact with virtual displays for all general-purpose computing needs
- Virtual displays are registered in the three-dimensional physical world

A virtual display can be:

- A simulated physical display (virtual monitor, virtual smartphone)
- An application, window, or document
- A 3D object or scene

The Everyday AR vision requires all-day AR glasses.

windowscentral.com

ALL-DAY AR GLASSES REQUIREMENTS

Lightweight

Eyeglasses (or contact lens) form factor

All-day battery

No cables

Wide FOV

High resolution

Eye tracking

windowscentral.com

HOLOLENS2 PROTOTYPE — VIRTUAL MULTI-MON

HOLOLENS2 PROTOTYPE — HYBRID MULTI-MON

MORE FLEXIBLE SPACE

Illustrations by Feiyu Lu and Lei Zhang

MORE FLEXIBLE SPACE

AR VIRTUAL DISPLAYS ON THE GO

"Glanceable AR"

- Information/apps that follow you
- Rapid access to information/apps
- But also unobtrusive, non-distracting, non-occluding

Approach

 Body-fixed content that normally resides outside the field of view

Illustration by Lei Zhang

GLANCEABLE AR

In this research, we propose Glanceable AR, an interaction paradigm for accessing information in AR HWDs.

Lu, F. et al., IEEE VR 2020

GLANCEABLE AR

System Design

and can be accessed by verging one's gaze at the depth of the icon.

Lu, F. et al., ACM SUI 2023

GLANCEABLE AR FINDINGS

Users prefer to see only the real world by default.

People are willing to use Glanceable AR in authentic scenarios and find it less distracting than using a smartphone.

Information access in Glanceable AR is faster than using a smartphone.

Moving information to the periphery or minimizing it visually is effective for reducing occlusion of the real world.

SO WHY DO WE NEED AI?

AR glasses should not require users to manually change **settings** for the multitude of **contexts** in which they'll be used.

AR glasses should not require users to manually search/browse the multitude of **apps/documents** for one that is relevant to their current **context**.

INTELLIGENT AR

Sense contextual data

- Cameras, depth cameras
- Eye trackers
- Microphones
- Databases

Infer the context (environment, task, and user)

- Computer Vision
- Machine Learning

Adapt the interface

Predict the user's information needs

ADAPTIVE USE OF SPACE

ADAPTIVE INFORMATION DISPLAY

Lu, F. et al., ACM SUI 2021

ADAPTIVE INFORMATION DISPLAY

Illustration by Lei Zhang

Scenario: Conversation Interface: Context-Intelligent AR

Davari et al., IEEE VR 2022

FUTURE INTELLIGENT AR EXAMPLES

Predicts that you'll use the Netflix app in the living room but the shopping list app in the kitchen.

Displays information using text when you are stationary but using audio when you're moving.

Switches from gesture to voice input when you're doing a real-world task that involves both your hands.

Automatically opens the meeting agenda document when you go to the conference room at the scheduled meeting time, shares it with the other AR glasses in the room, and places it on the wall so that everyone can view it comfortably.

AR+AI TO ENABLE FUTURE PERSONAL COMPUTING

Goal: Use AR to work within real-world contexts without unnecessary clutter or distraction

Approach: Design AR interfaces to allow rapid access and automatically keep content out of the way

Goal: Assist the user by providing the right information, at the right time, in the right way

Approach: Provide context-awareness and intelligent adaptation

Goal: Improve upon current computing experiences

Approach: Take advantage of the ultimate flexibility of AR virtual displays

INTERDISCIPLINARY VISION

This vision requires the work of

- Artists
- Designers
- Technologists
- Engineers
- User Experience experts
- Human Factors experts

ACKNOWLEDGEMENTS

<u>Students/alumni</u>	<u>Collaborators</u>
Leonardo Pavanatto	Chris North
Feiyu Lu	Rich Stoakley
Shakiba Davari	Carmen Badea
Cory Ilo	Tobias Höllerer
	Wallace Lages
	Joe Gabbard
	Nazila Roofigari-Esfahan

<u>Funding</u>

Microsoft Research

Google

Office of Naval Research

Institute for Creativity, Arts, and Technology

Contact: dbowman@vt.edu https://hci.icat.vt.edu https://wordpress.cs.vt.edu/3digroup/ @CHCI_VT

